

SPECIFICATION FOR APPROVAL

() Preliminary Specification

(•) Final Specification

Title

BUYER	General
MODEL	

55.0" WUXGA OLED

SUPPLIER	LG Display Co., Ltd.
*MODEL	LW550PUL
SUFFIX	HLA2

*When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE		APPROVED BY	SIGNATURE DATE
/			Sinkyun Park / Team Leader	
			REVIEWED BY	
/			Dalyoung HA / Project Leader	
			PREPARED BY	
/			Jaeho Shin / Engineer	
Please return 1 copy for your confirmation with your signature and comments.			OLED TV Developme LG Display Co.,	

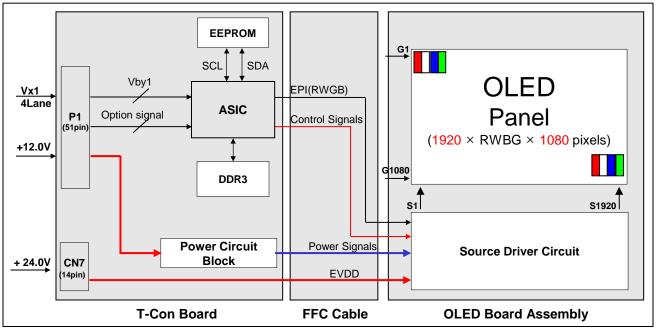
CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	7,8
3-3	SIGNAL TIMING SPECIFICATIONS	9
3-4	V by ONE SIGNAL SPECIFICATIONS	10~12
3-5	COLOR DATA REFERENCE	13
3-6	POWER SEQUENCE	14~16
4	OPTICAL SPECIFICATIONS	17~20
5	MECHANICAL CHARACTERISTICS	21~25
6	RELIABILITY	26
7	INTERNATIONAL STANDARDS	27
7-1	SAFETY	27
7-2	Environment	27
8	PACKING	28
8-1	DESIGNATION OF LOT MARK	28
8-2	PACKING FORM	28
9	PRECAUTIONS	29
9-1	OPERATING PRECAUTIONS	29
9-2	ELECTROSTATIC DISCHARGE CONTROL	29
9-3	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	29
9-4	STORAGE	29
9-5	Handling Precautions for Protection Film	30
9-6	Appropriate Condition for Commercial Display	31
9-7	Protection Film	32
9-8	B/A Box Pretreatment Precautions	32
9-9	Packing Precautions	32

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
0.1	Dec, 24, 2017	-	Pre Specification (First Draft)
0.2	Apr, 11, 2017		Update Protection Film & B/A Box Pretreatment Precautions
0.3	Apr, 23, 2018	41	Update Temperature sensor address
		16	JB T2 Change. 13s → 9.5s

1. General Description


The LW550PUL is a Color Active Matrix Organic Light Emitting Diode Display (OLED).

The matrix employs Oxide Thin Film Transistor as the active element. It is a bottom emission display type. It has a 55 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array).

Each pixel is divided into Red, Green, Blue and white sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot. Therefore, it can present a palette of more than 1.07B(true) colors.

It has been designed to apply the 10-bit 4 Lane V by One interface.

It is intended to support TV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

General Features

Active Screen Size	54.64 inches(1387.86 mm) diagonal
Outline Dimension	1217.48(H) x 693.94(V) mm (Typ.)
Pixel Pitch	0.630 mm x 0.630 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RWBG stripe arrangement
Color Depth	10bit(R), 1.07Billon colors
Luminance, White	400 / 150 cd/m ² (Center 1point ,Typ.)
Color Viewing Angle	R/L 120 (min.), U/D 120 (min.) (Δu'v' ≤ 0.026)
Power Consumption	Total 89.04W (Typ.) [Logic=11.52W, EVDD=77.52W] @ IEC62087
Weight	2.4kg (Typ.) (W/o C-PCB& Shield)
Display Mode	Normally black
Surface Treatment	Hard coating(2H), Anti-reflection treatment of the front polarizer (Reflectance Typ. 1.2%)

2. Absolute Maximum Ratings

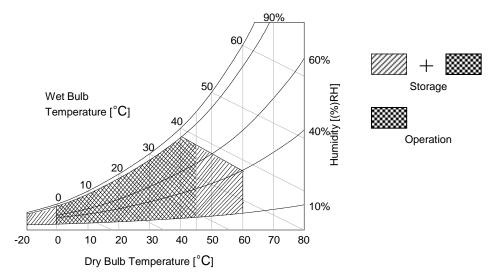

The following items are maximum values which, if exceeded, may cause faulty operation or damage to the OLED module.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol Value		lue	Unit	Note
Fala	Parameter		Min	Max	Unit	NOLE
Dower Input Voltage	Logic	VDD	-0.3	+14.0	V _{DC}	
Power Input Voltage	OLED Panel	EVDD	-0.3	+ 26.0	V _{DC}	1
T-Con Option Selection Voltage		V _{LOGIC}	-0.3	+3.7	V _{DC}	
Operating Temperature		T _{OP}	0	+45	°C	2
Storage Temperature		T _{ST}	-20	+60	°C	2
Panel Front Temperature		T _{SUR}	-	(+68)	°C	3
Operating Ambient Humidity		H _{OP}	10	90	%RH	0
Storage Humidity		H _{ST}	10	90	%RH	2

Notes

- 1. Ambient temperature condition (Ta = 25 \pm 2 $^\circ\text{C}$)
- 2. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be Max 39°C, and no condensation of water.
- 3. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with OLED module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68°C. The range of operating temperature may be degraded in case of improper thermal management in final product design.

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power for the circuit. The other is used for the EVDD.

Table 2. Electrical Characteristics

Parameter	Symbol			Unit	Notes		
i diameter			Min	Тур	Max		Notes
Dower Input Voltage	,	VDD	10.8	12.0	13.2	V	
Power Input Voltage	E	VDD	22.8	24.0	25.2		
			-	0.96	1.14		1
Device legist Current		I _{VDD}	-	1.21	1.44		2
Power Input Current			-	3.23	3.88	A	1
	I _{EVDD}	-	9	10		3	
	P _{VDD}		-	11.52	13.71	Watt	1
Power Consumption			-	14.52	17.28		2
	г	2	-	77.52	93.02	wall	1
	F	EVDD	-	216	240		3
		$I_{\text{RUSH}_{VDD}}$	-	-	7.5	A	
Rush current		$I_{\text{RUSH}_\text{EVDD}}$			13.6		
	I _{RUSH}	T _{RUSH_VDD}	-	-	2	us	
		T _{RUSH_EVDD}	10.8	12.0	13.2	ms	

Note

1. The specified current and power consumption are under the VDD=12.0V, EVDD=24.0V Ta=25 \pm 2°C,

 f_V =120Hz condition whereas standard moving picture(IEC62087) is displayed and f_V is the frame frequency.

2. The current (I_{VDD}) is specified at the maximum current pattern (1by1 Horizontal Pattern)

3. The current (IEVDD) is specified at the maximum current pattern (Secondary Color Pattern).

3-2. Interface Connections

This OLED module employs two kinds of interface connection, 51-pin connector is used for the module electronics and 14-pin connector is used for the EVDD.

3-2-1. OLED Module

- VDD Connector (CN6): GT05S-51S-H38(LSM) or FI-RXE51S-HF(JAE)
- Mating Connector : FI-RE51HL(JAE) or compatible

Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	VDD	Power Supply +12.0V	27	GND	Ground
2	VDD	Power Supply +12.0V	28	Rx0N	V-by-One HS Data Lane0
3	VDD	Power Supply +12.0V	29	Rx0P	V-by-One HS Data Lane0
4	VDD	Power Supply +12.0V	30	GND	Ground
5	NC	No Connection	31	Rx1N	V-by-One HS Data Lane1
6	GND	Ground	32	Rx1P	V-by-One HS Data Lane1
7	GND	Ground	33	GND	Ground
8	GND	Ground	34	Rx2N	V-by-One HS Data Lane2
9	GND	Ground	35	Rx2P	V-by-One HS Data Lane2
10	Off RS	Off RS Done(H), Set←Module (note 3)	36	GND	Ground
11	AC_DET	AC_DET (H= On), Set \rightarrow Module	37	Rx3N	V-by-One HS Data Lane3
12	Error Detection	H' = Error , 'L' = Normal (note 4)	38	Rx3P	V-by-One HS Data Lane3
13	I2C_SDA	I2C for Customer		GND	Ground
14	I2C_SCL			NC	No Connection
15	NC	Reserved	41	NC	No Connection
16	NC	Reserved	42	NC	No Connection
17	NC	For LGD Internal Use	43	NC	No Connection
18	NC	I2C for LGD Internal Use (note5)	44	NC	No Connection
19	NC	IZC IOI LOD IIItemai Ose (notes)	45	NC	No Connection
20	EVDD_DET	EVDD reset, Set ← Module (note6)	46	NC	No Connection
21	Bit Select	Bit Selection (10bit only)	47	NC	No Connection
22	NC	AGP2 (note 7)	48	NC	For LGD Internal Use
23	NC	AGP1 (note 7)	49	NC	For LGD Internal Use
24	GND	Ground	50	NC	On_RF_Done Set ← Module
25	HTPDN	Hot plug detect	51	NC	For LGD Internal Use
26	LOCKN	Lock detect	-	-	-

Notes

- 1. All GND(ground) pins should be connected together.
- 2. All Input levels of V-by-One signals are based on the V-by-One HS Standard.
- 3. Specific pin No. #10 is used for compensation when Power turn off.
- 4. Specific pin No. #12 is used for "Power Error detection" of the OLED module.
- 5. Specific pins #18 and #19 are used only for LGD. (Do not connect)
- 6. Specific pin No. #20 is used only for EVDD level monitoring of the OLED module. (For set system)
- 7. Specific pins No. **#22** and **#23** are used for "No signal detection" of system signal interface. It should be GND for NSB (No Signal Black) while the system interface signal is not. If this pin is "H" or "NC", OLED module displays AGP (Auto Generation Pattern).

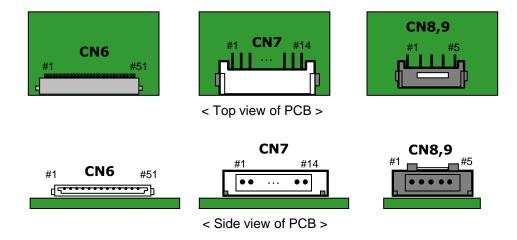
Ver. 0.3

3-2-2. OLED Module (EVDD)

- EVDD Connector (CN7) : 20022WR-H14B2 (manufactured by Yeon Ho)
- Mating Connector : 2022HS-14B2(BK) (manufactured by Yeon Ho)
- VLC Connector (CN8, 9) : 12507WR-H05G (manufactured by Yeon Ho)

Table 4. EVDD CONNECTOR(CN7) PIN CONFIGURATION

Table 5-1. VLC Tx CONNECTOR(CN8) PIN CONFIGURATION


No	Symbol	Description
1	EVSS	OLED Panel Ground
2	EVSS	OLED Panel Ground
3	EVSS	OLED Panel Ground
4	EVSS	OLED Panel Ground
5	EVSS	OLED Panel Ground
6	EVSS	OLED Panel Ground
7	EVSS	OLED Panel Ground
8	EVDD	OLED Panel Power Supply +24V
9	EVDD	OLED Panel Power Supply +24V
10	EVDD	OLED Panel Power Supply +24V
11	EVDD	OLED Panel Power Supply +24V
12	EVDD	OLED Panel Power Supply +24V
13	EVDD	OLED Panel Power Supply +24V
14	EVDD	OLED Panel Power Supply +24V

No	Symbol	Description
1	APLC_TXCLK_P	VLC LVDS Tx CLK +
2	APLC_TXCLK_N	VLC LVDS Tx CLK -
3	GND	Ground
4	APLC_TXDAT_P	VLC LVDS Tx Data +
5	APLC_TXDAT_N	VLC LVDS Tx Data -

Table 5-2. VLC Rx CONNECTOR(CN9) PIN CONFIGURATION

No	Symbol	Description
1	APLC_RXDAT_N	VLC LVDS Rx Data -
2	APLC_RXDAT_P	VLC LVDS Rx Data +
3	GND	Ground
4	APLC_RXCLK_N	VLC LVDS Rx CLK -
5	APLC_RXCLK_P	VLC LVDS Rx CLK +

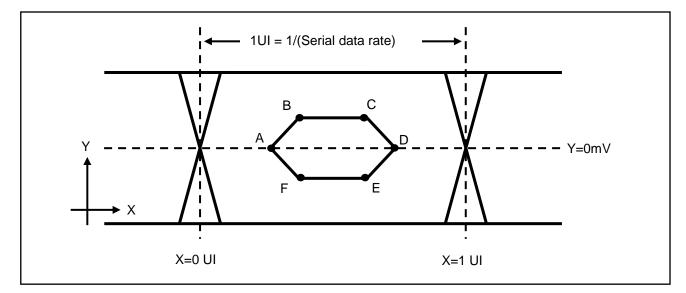
Rear view of OLED Module

3-3. Signal Timing Specifications

Table 6 shows the signal timing required at the input of the **Vx1** transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

ITEM		Symbol	Min	Тур	Мах	Unit	Note
	Display Period	tH∨	480	480	480	tCLK	1920 / 4
Horizontal	Blank	tнв	60	70	100	tCLK	1
	Total	tHP	540	550	580	tCLK	
	Display Period	t∨∨	1080	1080	1080	Lines	
Vertical	Blank	t∨B	44 (252)	45 (270)	46 (276)	Lines	1
	Total	tVP	1124 (1332)	1125 (1350)	1126 (1356)	Lines	

Table 6. TIMING TABLE (DE Only Mode)

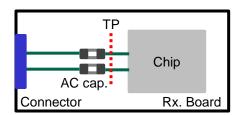

ITEI	ITEM		Min	Тур	Max	Unit	Note
	DCLK	fclk	73.25	74.25	75.25	MHz	
	Horizontal	fн	133.20	135	136.80	KHz	2
Frequency	Vertical	f∨	118.42 (98.68)	120 (100)	121.62 (101.32)	Hz	2 NTSC : 118.42~121.62Hz (PAL : 98.68~101.32Hz)

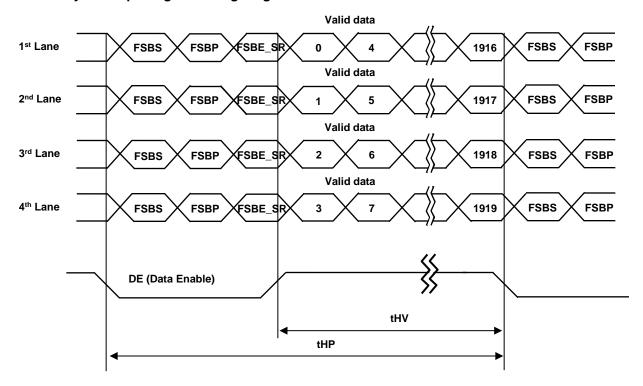
Notes

- 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.
- 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
- * Timing should be set based on clock frequency.

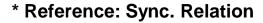
3-4. V by One input Signal Characteristics

3-4-1. V by One Input Signal Timing Diagram

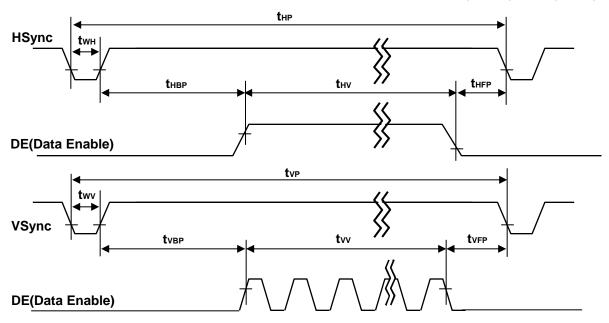



Table 7. Eye Mask Specification

	X [mV]	Note	Y [UI]	Note
A	0.25 (max)	2	0	-
В	0.30 (max)	2	50	3
С	0.70 (min)	3	50	3
D	0.75 (min)	3	0	-
E	0.70 (min)	3	-50	3
F	0.30 (max)	2	-50	3


Notes

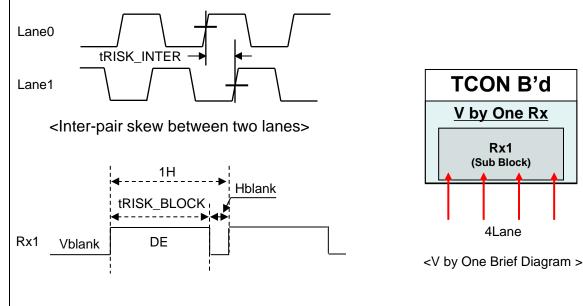
- 1.1 All Input levels of V by One signals are based on the V by One HS Standard.
- 1.2 When using the Tx's Pre-Emphasis function to be set to a minimum value that meets the EYE Mask Spec
- 2. This is allowable maximum value.
- 3. This is allowable minimum value
- 4. The eye diagram is measured by the oscilloscope and receiver CDR characteristic must be emulated.
 - PLL Type : 2nd Order
 - PLL bandwidth : 10MHz
 - Damping Factor : 2
- 5. EYE mask measuring point



3-4-2. V by One Input Signal Timing Diagram

* tHB = tHFP + tWH + tHBP

* tVB = tVFP + tWV + tVBP



3-4-3. DC Specification

1) DC Specification

V _{RTH}						V _{RCT}
Description	Symbol	Min	Тур	Мах	Unit	Note
CML Differential Input High Threshold	V _{RTH}	-	-	50	mV	-
CML Differential Input Low Threshold	V _{RTL}	-50	-	-	mV	-
CML Common Mode Bias Voltage	VRCT	-	0.75	-	V	-

2) AC Specification

<Inter-pair skew between two sub-blocks>

Description	Symbol	Min	Max	Unit	Note
Allowable inter-pair skew between lanes	tRISK_INTER	-	5	UI	1, 3
Allowable inter-pair skew between sub-blocks	tRISK_BLOCK	-	1	DE	1, 4

Rx1 (Sub Block)

4Lane

Notes: 1.1UI = 1/serial data rate

- 2. it is the time difference between the true and complementary single-ended signals.
- 3. it is the time difference of the differential voltage between any two lanes in one sub block.
- 4. it is the time difference of the differential voltage between any two blocks in one IP.

3-5. Color Data Reference

The brightness of each primary color (red,green,blue) is based on the 10bit gray scale data input for the color. The higher binary input, the brighter the color. Table 8 provides a reference for color versus data input.

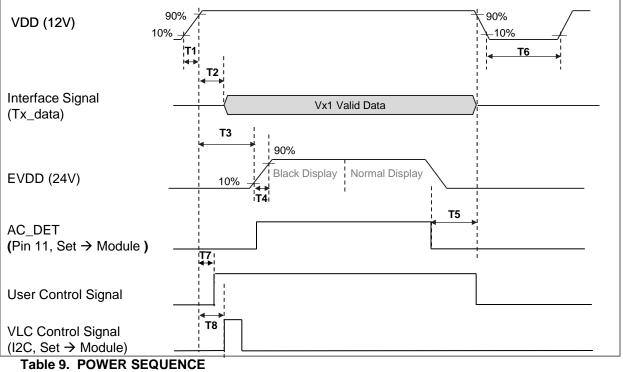
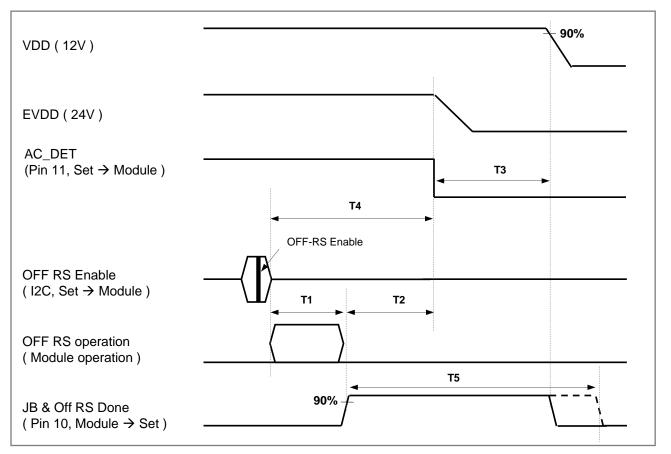

Pac	ker input & Unpacker output	30bpp RGB (10bit)
	D[0]	R[2]
	D[1]	R[3]
	D[2]	R[4]
	D[3]	R[5]
Byte0	D[4]	R[6]
	D[5]	R[7]
	D[6]	R[8]
	D[7]	R[9]
	D[8]	G[2]
	D[9]	G[3]
	D[10]	G[4]
	D[11]	G[5]
Byte1	D[12]	G[6]
	D[13]	G[7]
	D[14]	G[8]
	D[15]	G[9]
	D[16]	B[2]
	D[17]	B[3]
	D[18]	B[4]
Duted	D[19]	B[5]
Byte2	D[20]	B[6]
	D[21]	B[7]
	D[22]	B[8]
	D[23]	B[9]
	D[24]	Don't care
	D[25]	Don't care
	D[26]	B[0]
Dute 2	D[27]	B[1]
Byte3	D[28]	G[0]
	D[29]	G[1]
	D[30]	R[0]
	D[31]	R[1]

Table 8. COLOR DATA REFERENCE

Notes 1. 30bpp RGB (10bit) is 4 byte mode

3-6. Power Sequence

3-6-1. OLED Driving circuit



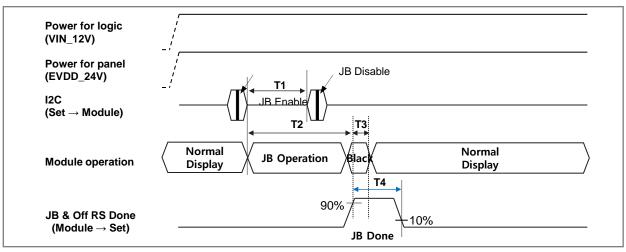
Desemator		Unit	Neter		
Parameter	Min	Тур	Мах	Unit	Notes
T1	1	-	60	ms	1
T2	1	-	-	ms	
Т3	2.0	-	-	sec	2
T4	4	-	60	ms	
T5	60	-	-	ms	
Т6	2.0	-	-	sec	3
T7	0	-	T2	ms	4
Т8	1	-	Т3	sec	

Notes

- 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
- 2. The T3 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem. T3 should be larger than T2.
- 3. T6 should be measured after the module has been fully discharge between power off and on period.
- 4. If the on time of signals (Interface signal and user control signals) precedes the on time of Power(VDD)
- it will be happened abnormal display. When T7 is NC status, T7 doesn't need to be measured
- * Black pattern is displayed during black display period before normal display. (ON RF Time 3.0S)
- When the power for logic (VDD_12V) turns off, EVDD should be less than 8.0V. But, it does not matter if there is no garbage image.
- * Please avoid floating state of interface signal at invalid period.

3-6-2. TFT compensation operation(OFF RS)

Table 10. POWER SEQUENCE


Deremeter		l lm it	Natas		
Parameter	Min	Тур	Max	Unit	Notes
T1	50	-	150	sec	
T2	0.5	-	10	sec	
Т3	60	-	-	ms	
T4	55	-	160	sec	
T5	0.56	7	10	sec	

Notes

- 1. T4 is for unstable OFF RS Done. TV system is recommended to be turned off after T4 although Off-RS Done signal is not transferred.
- When there is power on action before completing OFF RS operation, don't change OFF RS enable signal(1→0).

Just do power off and power on.

3-6-3. OLED compensation operation(JB)

Table 11. JB Power Sequence

Parameter		Unit	Notes			
Farameter	Min	Тур	Max	Unit	NOLES	
T1	10	-	20	sec		
T2	9.5	-	25	sec		
T3	8	24	40	ms		
T4	0.5	7	10	sec		

Notes

* OLED Compensation is to be operated in conjunction with the OFF RS and

it must be operated in the temperature range of JB operation, 10 to 40 °C.

* OLED compensation needs to be cooled during at least 1 hour more before it is operated and at this time, the Commercial System needs to be at the standby mode.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at distance 50cm from the OLED surface at a viewing angle of Φ and θ equal to 0°. FIG. 1 shows additional information concerning the measurement equipment and method.

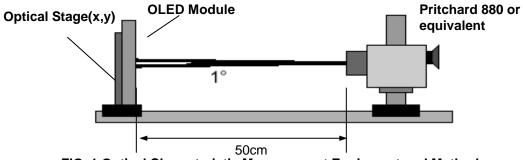


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 12. OPTICAL CHARACTERISTICS	Ta= 25±2°C, VDD=12.0V, EVDD=24V, fv=120Hz, Dclk=74.25MHz

Parameter			Symphol			Unit	Note			
		Symbol			Min	Тур	Мах		Note	
Contrast Ratio				CR		120,000	150,000	-		1
		••		Normal	120	150				
Surface Lumina	nce, wh	lite	L _{WH}	2D	Peak	320	400		cd/m ²	2
Luminance Unif	ormity		δ _{WHITE}		9P	75	85	-	%	3
D		Gray-to-Gray		G to G		-	1	3	ms	4
Response Time		MPRT		MPRT		-	8	12	ms	5
		RED		Rx			0.674			
		RED	Ry			0.327]			
		GREEN		Gx			0.278]		
Color Coordinat	es	GREEN	Gy		Тур -0.02	0.655	Тур +0.02			
[CIE1931]		BLUE	Bx			0.142				
			Ву			0.054				
		WHITE	Wx			0.285				
			Wy			0.294				
Color Temperatu	ıre						9,300		к	
Color Gamut (B1	F709)						120		%	
Color Viewing A	ngle									
	x axis,	right(ϕ =0°)		θr		60	-	-		
$(\Lambda u' v' < 0.026)$	x axis,	left (θΙ		60	-	-		6
(∆u'v' ≤ 0,026)	y axis,	y axis, up (∳=90°)		θu		60	-	-	degree	0
y axis, down (φ=270°)		θd		60	-	-				
Life Time (B10)				Hrs		-	30,000	-		7
Gray Scale							2.2			8

Notes

1. Contrast Ratio(CR) is defined mathematically as :

Surface Luminance with all white pixels

Contrast Ratio = Surface Luminance with all black pixels

It is measured at center 1-point.

 Surface luminance is determined after the unit has been 'ON' and 60minutes after lighting the module in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the OLED surface 50cm from the surface with all pixels displaying white.
 For more information see the FIG. 2.

Normal : APL 100% (Full white) / Peak : APL 25%

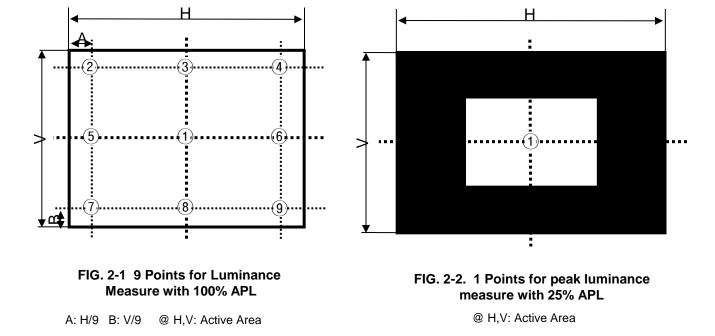

- 3. The variation in surface luminance , δ WHITE is defined as : δ WHITE(9P) = Minimum(L_{on1},..., L_{on9}) / Maximum(L_{on1}...., L_{on9}) Where L_{on1} to L_{on9} are the luminance with all pixels displaying white at 9 locations . For more information, see the FIG. 2.
- 4. Response time is the time required for the display to transit from G(N) to G(M) (Rise Time, Tr_R) and from G(M) to G(N) (Decay Time, Tr_D). For additional information see the FIG. 3. (N<M)
 ※ G to G Spec stands for average value of all measured points.

Photo Detector : RD-80S / Field : 2°

- 5. MPRT is defined as the 10% to 90% blur-edge width Bij(pixels) and scroll speed U(pixels/frame)at the moving picture. For more information, see FIG 4
- Viewing Angle Color Shift (VACS) is defined as follows after measuring color coordinates at each angle.; VACS=sqrt(du3+dv3) (@ CIE (u', v') color space) For more information, see the FIG. 5.
- 7. Test Condition : IEC62087 standard video with OFF-RS every 4 hours at room temperature 25°C (If the cumulative time of usage is over 4 hours, OFF-RS compensation should be performed.)
- 8. Gray scale specification. Gamma Value is approximately 2.2. For more information, see the Table 13.

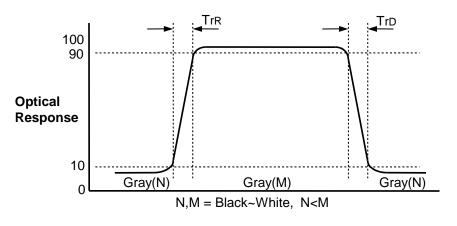

Gray Level	Luminance [%] (Typ)
LO	0.001
L15	0.20
L31	0.97
L47	2.42
L63	4.61
L79	7.59
L95	11.4
L111	16.0
L127	21.6
L143	28.0
L159	35.4
L175	43.7
L191	53.0
L207	63.2
L223	74.5
L239	86.7
L255	100

Table 13. GRAY SCALE SPECIFICATION

Measuring point for surface luminance & measuring point for luminance variation.

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

MPRT is defined as the 10% to 90% blur-edge with Bij(pixels) and scroll speed U(pixels/frame)at the moving picture.

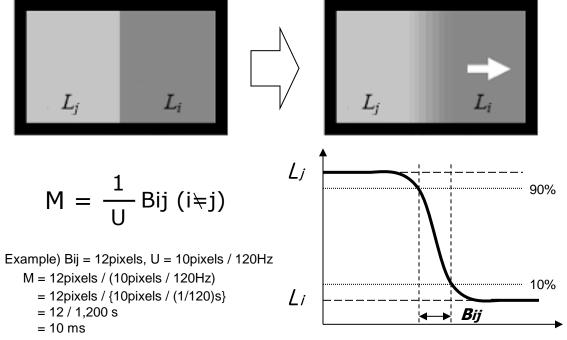
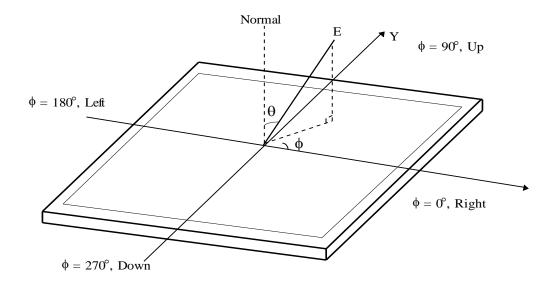



FIG. 4 MPRT

Dimension of viewing angle range

FIG. 5 Viewing Angle

5. Mechanical Characteristics

Table 14 provides general mechanical characteristics.

Table 14. MECHANICAL CHARACTERISTICS

Item	Value				
	Horizontal	1217.48mm			
Outline Dimension (Sealing Board Ass'y)	Vertical	693.94mm			
	Thickness	0.83mm (B)			
Active Display Area	Horizontal	1209.6 mm			
(Base On Board Ass'y)	Vertical	680.4mm			
On Bezel	Horizontal	3.94mm(Left) / 3.94mm(Right)			
(Active Area ~ Side Sealing)	Vertical	3.94mm(Top) / 9.64mm(Bottom)			
Weight	2.4kg (Typ.) (W/O C-PCB & Shield)				

Note : Please refer to a mechanical drawing in terms of tolerance at the next page.

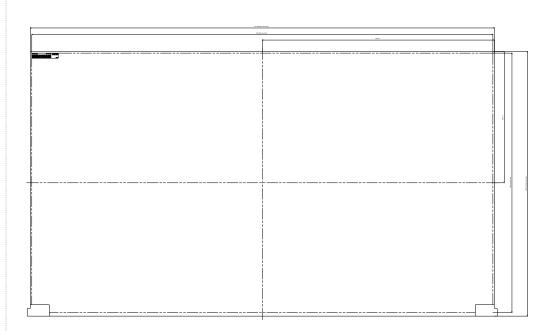
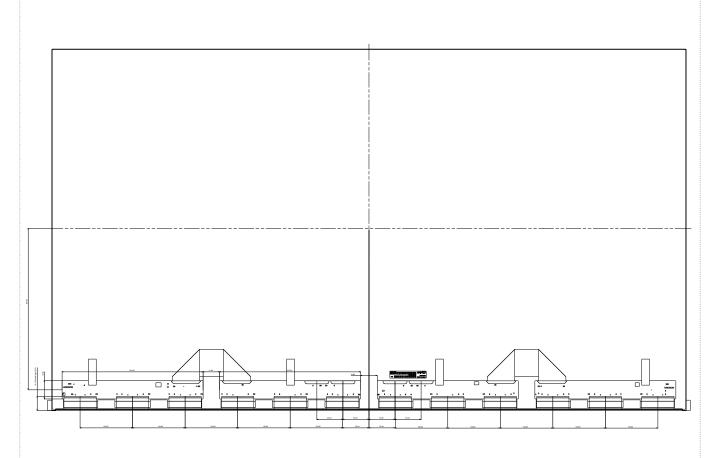

C/Shield & C-PCB weight : 0.14 kg

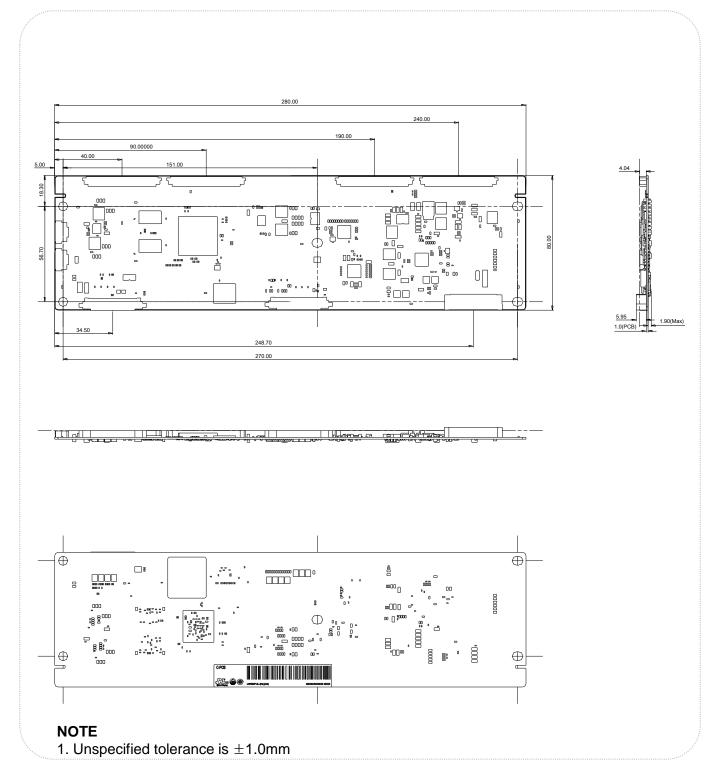
Table 15. Curvature CHARACTERISTICS

Item	Value				
Landagana	Concave	Max R1000mm			
Landscape	Convex	Max R1000mm			
Vertical	Concave	Max R1000mm			
Vertical	Convex	Max R1000mm			

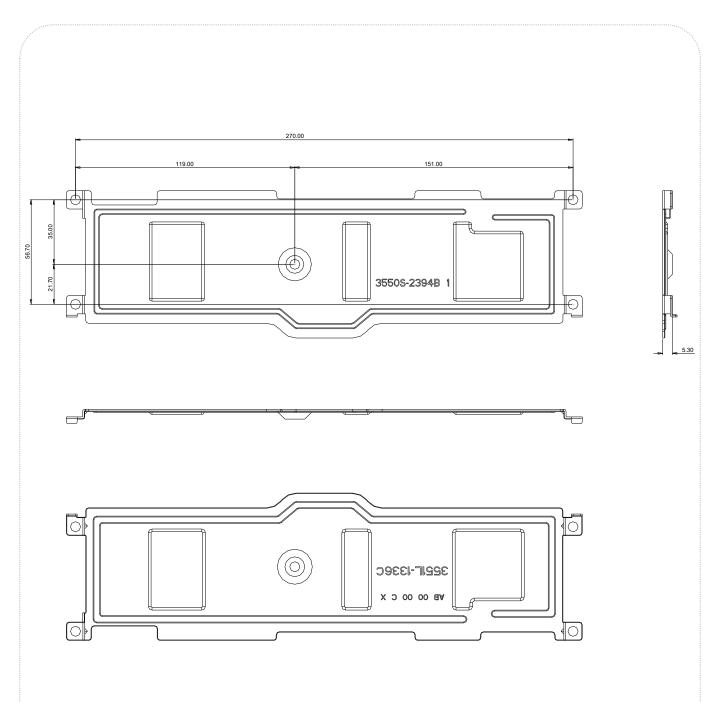
Note : Please refer to design guide for Heat dissipation for SOURCE D-IC at the Appendix VII(Page44).


[Front View of Board Assembly]

NOTE


1. Unspecified tolerance is ± 1.0 mm

[Rear View of Board Assembly]



NOTE 1. Unspecified tolerance is ± 1.0 mm

[Control Board Assembly Dimension]

[Control PCB Shield Dimension]

NOTE 1. Unspecified tolerance is ± 1.0 mm

6. Reliability

Table 16. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition
1	High temperature storage test	Ta= 60°C 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 240h
4	Low temperature operation test	Ta= 0°C 240h
5	Pallet packing vibration test (non-operating)	Wave form : random Vibration level : 1.15Grms Bandwidth : 1-200Hz Duration : Z, 60 min
6	Humidity condition Operation	Ta= 40 °C, 90%RH
7	Altitude operating storage / shipment	0 - 15,000 ft 0 - 40,000 ft

7. International Standards

7-1. Safety

- UL 60065, Seventh Edition, Underwriters Laboratories Inc. Audio, Video and Similar Electronic Apparatus - Safety Requirements
- (2) CAN/CSA C22.2 No.60065:03, Canadian Standards Association. Audio, Video and Similar Electronic Apparatus - Safety Requirements.
- (3) EN 60065:2002 + A11:2008, European Committee for Electrotechnical Standardization (CENELEC).
 Audio, Video and Similar Electronic Apparatus - Safety Requirements.
- (4) IEC 60065:2005 + A1:2005, The International Electrotechnical Commission (IEC). Audio, Video and Similar Electronic Apparatus - Safety Requirements. (Including report of IEC60825-1:2001 clause 8 and clause 9)

7-2. Environment

(1) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

8. Packing

8-1. Information of OLED Module Label

(1) Lot Mark

A,B,C : SIZE(INCH) E : MONTH D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	А	В	С	D	E	F	G	Н	J	К

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

(2) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the OLED module. This is subject to change without prior notice.

8-2. Packing Form

- (1) Package quantity in one Pallet : 70 pcs (10*pcs/Packing * 7packings = Total 70 pcs/pallet)
- (2) Pallet Size : 1440 mm(W) X 1140 mm(D) X 1085 mm(H)

9. Precautions

Please pay attention to the followings when you use this OLED Board Assembly.

9-1 Operating Precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage :
- $V=\pm 200 mV(Over and under shoot voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Be careful for condensation at sudden temperature change.Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (6) Please do not give any mechanical and/or acoustical impact to Module. Otherwise, Module can't be operated its full characteristics perfectly.
- (7) A screw which is fastened up the steels should be a machine screw. (if not, it can causes conductive particles and deal Module a fatal blow)
- (8) Please do not set OLED on its edge.

9-2. Electrostatic Discharge Control

Since a Board Assembly is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

Please refer to design guide for Electrostatic discharging design for BOARD Assembly at the Appendix VIII(Page45).

9-3. Precautions for Strong Light Exposure

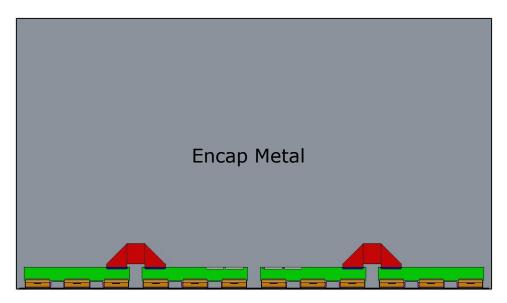
Strong light exposure causes degradation of polarizer and color filter.

9-4. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they are stored in the container in which they were shipped.
- (3) Wet bulb temperature should be Max 39°C, and no condensation of water.
- (4) Before installing the module, keep it in normal temperature and humidity.

9-5. Handling Precautions


(1) The protection film is attached to the bezel with a small masking tape.

When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.

- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) The Encap Metal surfaces(Rear of Board Assembly) should not be any residual moisture & Salinity.
 - Always handle the Board Assembly with gloves.
 - Chlorine or water from human sweat can accelerate the corrosion of metal encapsulation
 - Encap Metal surface should be protected by the moisture, salinity
- (4) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normalhexane.

Using a dry towel or fabric, remove water or solution like a cleaner from Board Assembly after finishing the install

- Do not use the cleaner containing acid or chlorine ingredient
- (5) Be careful that the washing droplet is not flooded into the border gap on the panel edge, when cleaning the surface of OLED Module. It may cause abnormal operating or a malfunction in the OLED Module.
- (6) When the OLED Module is assembled, mechanical stress may not be put on the panel.
- (7) Be careful not to place any extra mechanical stress to the OLED module when designing the set .
- (8) Be cautious not to any extra strong force (mechanical shock, strong tapping, shooting etc.) to the OLED module. It may cause abnormal operating or a malfunction in the OLED Module.
- (9) If the panel is broken, glass should be kept away from the eyes and mouth. When it comes to contact to hands, legs, skin, or clothes, wash thoroughly with soap, and seek medical attention if necessary.
- (10) Surface temperature of the Component on PCB should be controlled under 100° with TV Set status. If not, problems such as IC damage or decrease of lifetime could occur.

[Rear of Board Assembly]

9-6. Appropriate Condition for Commercial Display

- To extend the lifetime and optimize a function of module, the below-mentioned operating conditions are required.

- (1) Normal operating condition
- a. Temperature: 20 \pm 15 $^\circ\!\!\!C$
- b. Operating Ambient Humidity : 55 \pm 25 %
- c. Only for indoor operation.
- d. Display pattern: dynamic pattern (Moving picture)
 - The sudden image on the screen can be displayed after the static image is shown in the long-term.
- e. TFT Compensation should need at least one time in a day.
- Refer to the 3-6-2. TFT compensation operation(Page15).
- f. Lifetime in this spec. is guaranteed only when Display is used according to operating usages.
- (2) Operating usages under abnormal condition
- a. Ambient condition
 - Well-ventilated place is recommended to set up Commercial system.
- (3) Operating usages to reduce the risk of image sticking due to static image
- a. Suitable operating time: under 18 hours a day.
- b. OLED compensation should need.
- Refer to the 3-6-3. OLED compensation operation(Page16).
- c. Information display recommended to use with moving picture.
- d. Logo (image) and characteristics
 - Logo image recommended not to use.
 - If needed, recommend that its position needs to be periodically shifted.
 - Change colors themselves periodically.
- e. The below-mentioned conditions are not recommended .
 - Combination of Logo(or character) and background with largely different luminance.
 - Using a single moving picture. (Recommend to use several different moving pictures.)
 - The masked image with aspect ratio other than 16:9
 - The division of screen

Note1) Abnormal condition just means conditions except normal condition.

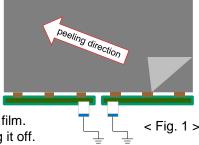
Note2) Black image or moving image is strongly recommended as a screen saver.

(4) If the module will be used under severe conditions such as high temperature, high humidity, display patterns or operation time etc., it is strongly recommended to contact LG Display for the advice about usage and applications. Otherwise, its reliability and function may not be guaranteed.

9-7. Protection Film

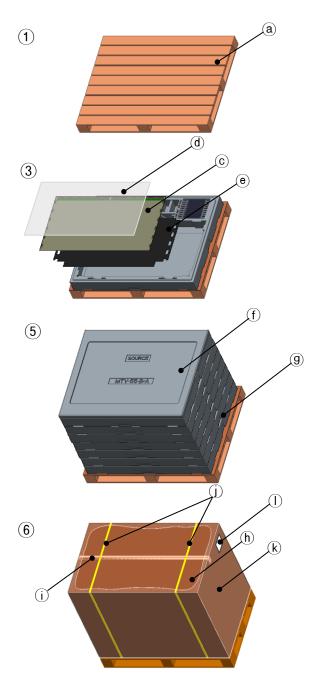
- (1) Please don't remove the protection film before assembly.
- (2) Please peel off the protection film slowly.
- (3) Please peel off the protection film just like shown in the Fig.1
- (4) Ionized air should be blown over during the peeling.
- (5) Source PCB should be connected to the ground when peel off the protection film.
- (6) The protection film should not be contacted to the source D-IC during peeling it off.

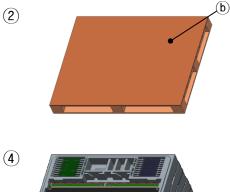
9-8. B/A Box Pretreatment Precautions

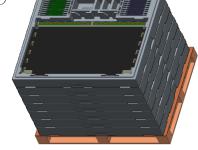

In winter season, in particular, please be aware of the following precautions.

- (1) Before putting B/A boxes on the line, aging process is required to make the temperature of products similar to the temperature of workplace.
- (2) Place the lid open on the B/A box and allowed to stand for 24 hours in the similar environment of work place. It was shown in Fig.1

9-9. Packing Precautions

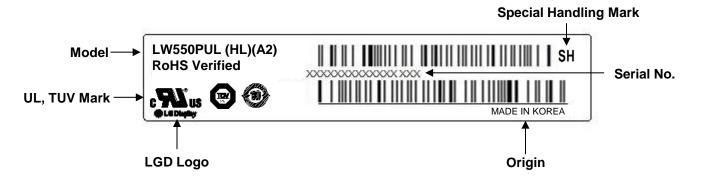

Product assembled into module should be stored in the Al-bag (cover case).




APPENDIX-I

Pallet Ass'y

- a) B/Ass'y Qty + PE Sheet / Box + PET Sheet / Box : 10pcs + 11pcs + 10pcs
- b) B/Ass'y Qty / Pallet : 70pcs
- c) Box Qty / Pallet : 7Box



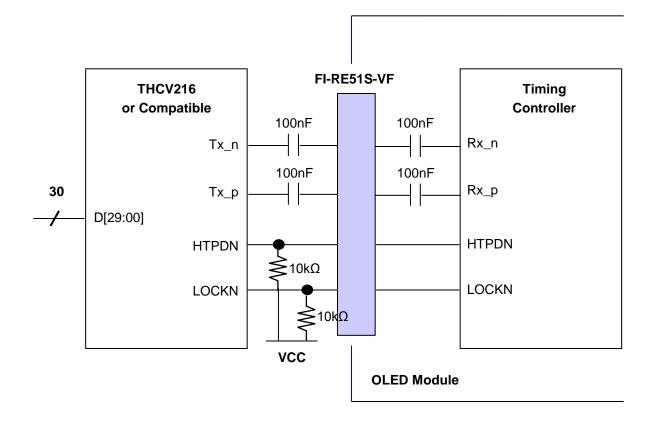
No.	Description	Material	
a	Pallet	Plywood	
b	Carton Plate	Paper(SW)	
C	Board Ass'y	-	
d	PET Sheet	PET	
(0)	PE Sheet	LDPE	
f	Top Packing	EPS	
9	Bottom Packing	EPS	
h	Angle Packing	Paper(SW)	
í	Таре	OPP	
Û	Band	PP	
k	Wrap	L-LDPE	
0	Label	PP	

APPENDIX- II

■ Board Ass'y Label

Control PCB Label

APPENDIX- III

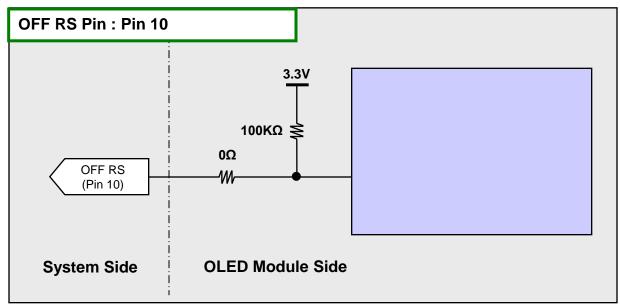

■ Box Label 100

Pallet Label

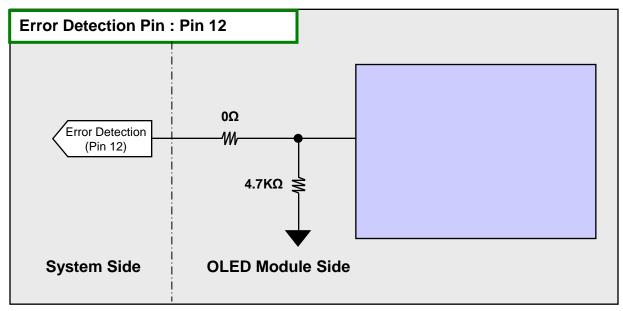
•	100		+				
LW55	50PUL	HLA2					
	EAJ64351304						
70 PCS	LOT/MM-DD		70				
MADE	IN KOREA	RoHS Verified HF					

APPENDIX - IV

Required signal assignment for Flat Link (Thine : THCV216) Transmitter

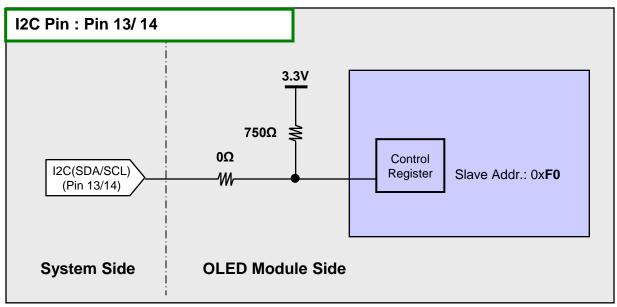

Note: 1. The OLED module uses a 100 nF capacitor on positive and negative lines of each receiver input.

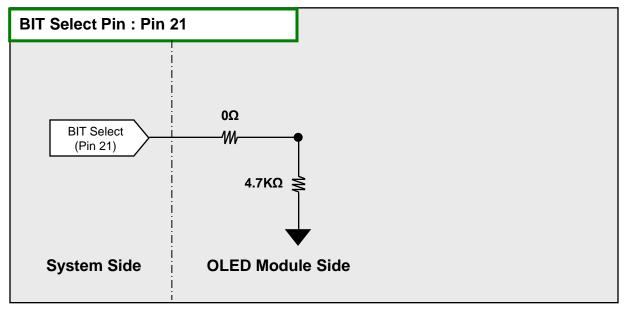
- 2. Refer to VbyOne Transmitter Data Sheet for detail descriptions. (THCV216 or Compatible)
- 3. About Module connector pin configuration, Please refer to the Page 7.


APPENDIX- IV-1

Option Pin Circuit Block Diagram

1) Circuit Block Diagram of OFF RS pin


2) Circuit Block Diagram of Error Detection pin


APPENDIX- IV-2

Option Pin Circuit Block Diagram

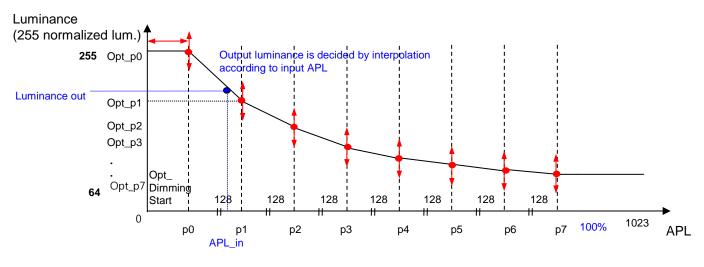
3) Circuit Block Diagram of I2C(SDA/SCL) pin

4) Circuit Block Diagram of **BIT** Selection pin

APPENDIX- V-1

Register map

The following register is controlled by I2C Interface.

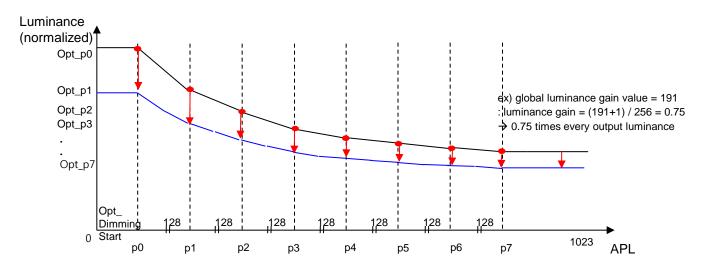

	Bit[7]: MSB	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]: LSB
Addr : 0x001	Not used	TPC EN	Not used	OFF RS enable	Not used	WAPL enable	Opt_ Dimmin_ start[9]	Opt_ Dimming start[8]

Device Address: 0xF0

Address [10:0]	Register Name	Name Description	
0x000	Valid	Read only register (LGD use)	
	[7] : Not used	LGD reserved	
	[6] : TPC enable	1: enable, 0: disable	
	[5] : Not used	LGD reserved	
0x001	[4] : Off RS enable	1: enable, 0: disable	
	[3] : Not used	LGD reserved	
	[2] : WAPL enable	1: WAPL, 0 : normal APL	
	[1:0] Opt_Dimming_start[9:8]	APL value of P0 point	
0x002	Opt_Dimming_start[7:0]		
0x003	Opt_p0	APL P0 point corresponds to the 255 normalized luminance	(Opt_p0 /114) * 200 nit
0x004	Opt_p1	APL P1 point corresponds to the 255 normalized luminance	(Opt_p1 /114) * 200 nit
0x005	Opt_p2	APL P2 point corresponds to the 255 normalized luminance	(Opt_p2 /114) * 200 nit
0x006	Opt_p3	APL P3 point corresponds to the 255 normalized luminance	(Opt_p3 /114) * 200 nit
0x007	Opt_p4	APL P4 point corresponds to the 255 normalized luminance	(Opt_p4 /114) * 200 nit
0x008	Opt_p5	APL P5 point corresponds to the 255 normalized luminance	(Opt_p5 /114) * 200 nit
0x009	Opt_p6	APL P6 point corresponds to the 255 normalized luminance	(Opt_p6 /114) * 200 nit
0x00A	Opt_p7	APL P7 point corresponds to the 255 normalized luminance	(Opt_p7 /114) * 200 nit

Address [10:0]	Register Name	ter Name Description		
	[7] : Not used	LGD reserved		
	[6:5] : LEA mode sel [1:0]	b00: Normal operation, b01 / b10 / b11: LGD reserved		
	[4] : LEA refresh mode en	1: LEA disable, 0: LEA enable		
0x00B	[3] : HDR_en	1: Enable, 0: Disable		
	[2] : HDR_LOCAL_BOOST_en	1: Enable, 0: Disable		
	[1:0]Opt_WAPL_Dimming_start[9:8]	ADL value of D0 point	Value Pange: 0, 1022	
0x00C	Opt_WAPL_Dimming_start[7:0]	APL value of P0 point	Value Range: 0~1023	
0x00D	Opt_WAPL_p0	APL P0 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x00E	Opt_WAPL_p1	APL P1 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x00F	Opt_WAPL_p2	APL P2 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x010	Opt_WAPL_p3	APL P3 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x011	Opt_WAPL_p4	APL P4 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x012	Opt_WAPL_p5	APL P5 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x013	Opt_WAPL_p6	APL P6 point corresponds to the 255 normalized luminance	Value Range: 0~255	
0x014	Opt_WAPL_p7	APL P7 point corresponds to the 255 normalized luminance	Value Range: 0~255	

□ PLC curve parameter



Every interval between each points except P0 is fixed to 128

- Luminance of p7~1023 interval are Opt_p7 - The point over 1023 is discarded

Address [10:0]	Register Name	Description	Remark	
0x015	Opt_WAPL_luminance_gain	Adjust WAPL luminance gain	Value Range: 0~255	
0x016	Opt_global_luminance_gain	Adjust global luminance gain 0~1 luminance gain according to 0~255 value (Same luminance gain is applied to every P0~P7 points)	Value Range: 0~255	
0x05D	[7] vsJB_en	1: Enable, 0: Disable		
0x05D	[6:0] Not used	LGD reserved		
0x05E	Test_temp2[15:8]	1 of temperature concer	Road only	
0x05F	Test_temp2[7:0]	1st temperature sensor	Read only	

Global luminance gain

LW550PUL

UVLC Parameter

Address [11:0]	Register Name	Description	Remark
	VLC_param_on_in [1:0]	VLC Enable "00" : VLC Off, "11" : VLC On	
0x040	VLC_param_window_size_in[3:2]	Peak gain Running Average Frame number "00": not used , "01" : 2 frame, "10" : 4 frame, "11" : 8 frame	
0x041	VLC_param_hys_threshold_in [7:0]	Hysteresis Threshold Changes below the threshold value in the minus direction from the current value are not reflected	
0x048	VLC_param_my_M_ID_in_MSB [1:0]	My Module ID (10bit) Set ID, Min. 1 ~ Max. 1000	
0x049	VLC_param_my_M_ID_in_LSB [7:0]	(0, 1001~1023 : Do not use)	
0x04A	VLC_param_my_picture_ID_MSB [1:0]	Picture ID (10bit)	
0x04B	VLC_param_my_picture_ID_MSB[7:0]	Set group ID (1~1023)	
0x04C	VLC_param_Peak_MSB [1:0]	VIC final pool (uminance value (10 hit)	Read only
0x04D	VLC_param_Peak_LSB [7:0]	VLC final peak luminance value (10bit)	Read only
0x04E	VLC_param_tx_cnt_out_MSB [1:0]		Read only
0x04F	VLC_param_tx_cnt_out_LSB [7:0]	VLC Tx. Counter value (10bit)	Read only
0x050	VLC_param_init_ACL_in _MSB [1:0]	VLC Initial peak luminance value (10bit)	
0x051	VLC_param_init_ACL_in_LSB [7:0]	Output with set peak luminance (0 ~ 1023)	

APPENDIX- VI-1

Gray to Gray Response Time Uniformity

This is only the reference data of G to G and uniformity for LW550PUL-HLA2 model.

1. G to G Response Time :

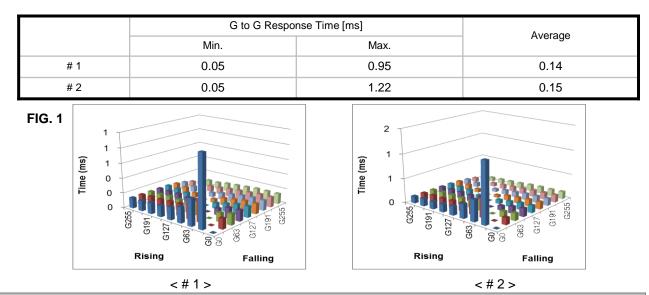
Response time is defined as FIG.1. and shall be measured by switching the input signal for "Gray (N)" and "Gray(M)".(32Gray Step at 8bit)

2. G to G Uniformity

The variation of G to G Uniformity , δ G to G is defined as :

G to G Uniformity = $\frac{Maximum(GtoG) - Typical(GtoG)}{Typical(GtoG)} \leq 1$

*Maximum (GtoG) means maximum value of measured time (N, M = 0 (Black) ~ 1023(White), 128 gray step).


	0Gray	127ray	255Gray	 895Gray	1023Gray
0Gray		TrR:0G→127G	TrR:0G→255G	 TrR:0G→895G	TrR:0G→1023G
127Gray	TrD:127G→0G		TrR:127G→255G	 TrR:127G→895G	TrR:127G→1023G
255Gray	TrD:255G→0G	TrD:255G→127G		 TrR:255G→895G	TrR:255G→1023G
895Gray	TrD:895G→0G	TrD:895G→127G	TrD:895G→255G		TrR:895G→1023G
1023Gray	TrD:1023G → 0G	TrD:1023G→127G	TrD:1023G→255G	 TrD:1023G→895G	

3. Sampling Size : 2 pcs

4. Measurement Method : Follow the same rule as optical characteristics measurement.

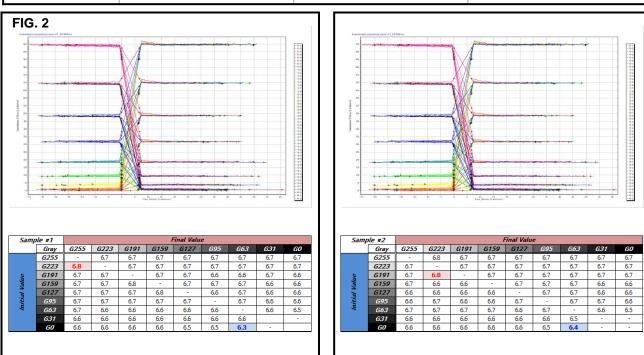
5. Current Status

Below table is actual data of production on 03. 23. 2018 (LGD PRV Event Sample)

APPENDIX- VI-2

MPRT Response Time Uniformity (δ_{MPRT})

This is only the reference data of MPRT and uniformity for LW550PUL-HLA2 model.

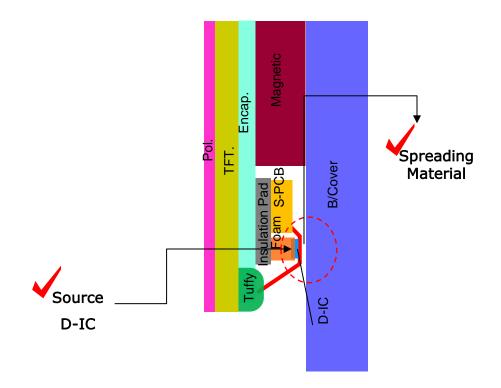

- 1. MPRT Response Time : Response time is defined as FIG. 2.
- 2. MPRT Uniformity The variation of MPRT Uniformity , δ $\mbox{\scriptsize MPRT}$ is defined as :

 $MPRT Uniformity = \frac{Maximum (MPRT) - Typical (MPRT)}{Typical (MPRT)} \leq 1$

- 3. Sampling Size : 2 pcs
- 4. Measurement Method : Follow the same rule as optical characteristics measurement.
- 5. Current Status

Below table is actual data of production on 03. 23. 2018 (LGD PRV Event Sample)

Sampla	MPRT Respor	Average	
Sample	Min.	Max.	Average
# 1	6.30	6.80	6.60
# 2	6.40	6.80	6.60


APPENDIX- VII

Design guide for Heat dissipation for SOURCE D-IC

1. Potential issue

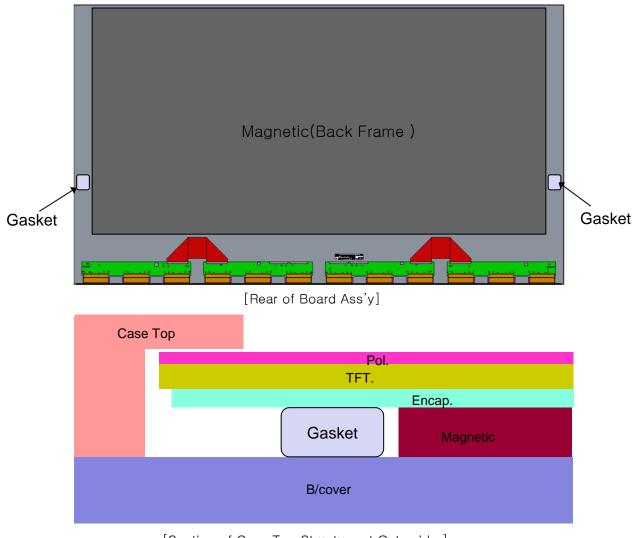
The heat transfer efficiency down if D-IC is not contacted.

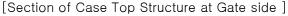
- 2. Recommendation
 - In case of using Heat spreading sheet
 - 1) Contact the SOURCE D-IC with embossment on Heat spreading sheet for heat dissipation.
 - 2) Not be overlapped much to prevent COF damage.
 - 3) The contact area to exceed the area of the SOURCE D-IC.

Above dimension can be different in accordance with model concept.

APPENDIX- VIII

Design guide for Electrostatic Discharging design for Board Assembly


1. Purpose


To design the contact structure for electrostatic discharging on Board Assembly

2. Recommendation

Electrostatic discharging design for Board Assembly (Ground Path)

- 1) To design the contact structure for electrostatic discharging on Board Assembly
- 2) Encap.(Rear side of Board Assembly) needs contact to metal(B/Cover) by using Gasket or equivalent .
- 3) It should need at least 2 Point, each left and right side.

